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Surfactant-water systems with small layer rigidity 

Phase stability, defects models and defects mobility in polyoxyethylene 
surfactant with water? 

by MAURICE KLEMAN 
Laboratoire de Physique des Solides (associe au CNRS), Universitt: de Paris-Sud, 

Bitiment 510, 91405 Orsay, France 

Institut Curie, Section de Physique et Chimie, 1 I ,  Rue Pierre et Marie Curie, 
75005 Paris, France 

Institute for Theoretical Physics, University of California, Santa Barbara, 
California 93106, U.S.A. 

(Received 11 September 1987; accepted 28 April 1988) 

Starting from recent experiments in non-ionic surfactants, we discuss various 
topics characteristic of low rigidity K ,  materials. ( I )  The stability of the lamellar 
and cubic phases is studied in a simple model involving K , ,  the saddle-splay 
constant K z ,  and entropy terms due to the chains. We expect the lamellar phase 
to have a large range of existence, and the cubic phase to be of small extent. ( 2 )  
We compare to cubic phases stability in large K ,  materials. We discuss the mobility 
of edge dislocations on the basis of a new model of the core which involves 
stretching of the core layers in one dimension, and easy nucleation of pores in this 
region. The core extension is a characteristic length of low K ,  materials which is 
much larger than de Gennes’ length for microemulsions with a similar low K , .  

1. Introduction 
Non-ionic polyoxyethylene surfactants with water have recently attracted the 

attention of physicists by a number of characters which differentiate them strongly 
from more usual ionic (like S.D.S.) or zwitter ionic surfactants (like lecithin). Let us 
indicate some of them. (i) Their binary phase diagrams have been studied in detail by 
Mitchell et al. [I]. The phase diagrams display the usual liquid-crystalline phases 
shown up by surfactants, but the extent of the lamellar La phase is quite large, while 
the temperature range of the cubic phase is relatively small, or even absent for small 
length aliphatic chains, as C,EO, and C,,,EO, [I]. For C,,EO,, the cubic phase 
appears for n > 4. (ii) The La phases of the compounds CI2EO5 and Ci2EO6 show up, 
in the high temperature region just below the L2 isotropic surfactant-water phase, 
curved regions observed by E.P.R. [2], whose density increases with temperature, with 
an activation energy of the order of 0.5 eV. These curved regions are related to the 
appearance, with seemingly the same energy of activation, of rectangular dislocation 
loops perpendicular to the layers (two screw segments and two edge segments) which 
gather in clusters and disorganize strongly the layers structure near the transition [3]. 

t This paper has been presented in part a t  the 4th European Winter Conference on Liquid 
Crystals, held in Borovetz, Bulgaria, under the chairmanship of Professor Derzhanski, in 
March 1987. 
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1356 M. Kleman 

Their thermodynamical stability has been analysed by Allain and Kleman [4]; i t  is 
related to the existence of an unusually small splay Frank modulus K,  (which is of the 
order of 100 times smaller than in lecithin [S], i.e. of the same order of magnitude as 
in microemulsions); the phase transition is therefore probably not an example of a 
defects-driven transition, as described in [6], notwithstanding the presence of thermo- 
dynamical defects. (iii) The screw parts of these thermodynamic dislocation loops are 
visible by freeze-fracture experiments [3] and are at a distance apart of approximately 
500 A; the edge parts, according to the calculation of [4], are also approximately at 
the same distance, i.e. about ten layers apart. The usual non-thermodynamic defects, 
which are visible with the polarizing microscope (oily streaks, focal domains, long 
edge dislocations, etc.) anneal quickly (in a few hours or even less), which also 
contrasts with the behaviour of non-thermodynamic defects in other surfactants like 
lecithin [7], where defects take days to anneal if at all. The mobility of edge dislo- 
cations in these non-ionic surfactants has been measured [5]: it is of the same order 
of magnitude as in usual thermotropic smectics (like 8CB). The activation energy 
(U,,, - 0.5eV) is much smaller (in 8CB, U,,, - 1.8eV). 

These peculiar aspects of non-ionic surfactants call for a re-evaluation of many 
physical properties in media with a low K,  splay modulus and a low activation energy 
for the mobility of defects. In the next paragraph of this paper, we shall first address 
the question of the large stability range of the L, phase and the quasi non-existence 
of the cubic phase; the very crude phenomenological model we develop in that 
purpose leads us to classify these non-ionic surfactants between the usual amphiphilic 
systems ( K ,  large) and the systems which display micro-emulsions ( K ,  small). The 
question of the stability and structure of cubic phases Q, is today the subject of 
various studies [&lo,  1 I]; this paragrah is by its own a contribution to this subject and 
discusses also in that respect the question of large K,  systems. 

The results are as follows: when K ,  is large, the stability of the cubic phase Q, is 
best explained, as in Helfrich’s theory [lo], by a negative saddle-splay constant K:4 
(b for bilayer) which originates generally in a monolayer saddle-splay constant K24 
which is itself negative. All our discussion is phenomenological, since there is no 
molecular model yet at hand which provides a negative K24. 

Helfrich [14], Lorenzen et al. [IS] and Petrov and Bivas [I61 have constructed 
theories which relate the material constants of the bilayer to those of the monolayers. 
Assuming that the monolayers are independant and add linearly their elastic contri- 
butions, they find Ki4 = 2K24 + 2K,d0a0 where do is a layer thickness and go the 
spontaneous curvature. Their calculation also assumes ldoaol < 1, so that the sign of 
Ki4 is always the same as the sign of K24. This result is certainly true most of the time, 
and particularly when the material constants are large, although it does not take into 
account the chemical interactions which may arise when the monolayers are very 
close. But these short range interactions might be quite relevant when the material 
constants are small, and be at  work in the ‘frustration’ model of [l 11. 

For low K ,  materials, we derive the material constants in the frame of a simple 
model where the dominant term is the entropy of the chains. We show that K ,  is 
proportional to kB T, and that K24 is itself small, but now positive. This would explain, 
as we argue, that the L, phase is favoured in the higher temperature part of the phase 
diagram and is of large extent, while the Q, phase, if it occurs, would show up at lower 
temperatures and be of a small extent. The Qa phase would then be stabilized either 
by new features in the molecular interactions which would yield a large enough 
‘classical’ negative K24r or by a kind of ‘frustration’ effect, as depicted in [ l  11, where 
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Modelling surfactant-water systems 1357 

the conflicting forces acting on the monolayers and resulting from a positive KZ4 would 
compromise in a new geometry with an effective negative Ki4. 

In what concerns defects, we show in 53 that the core of an edge dislocation of the 
lamellar phase is extended along a plane normal to the layers, in low K ,  media. This 
model differs greatly from the usual models of the core in layered media, and might 
explain the easy annealing properties of such systems; we discuss in particular (54) the 
process of easy glide of dislocations, which might occur by the nucleation of pairs of 
pores of opposite signs in the extended core (or in the terminology of metallurgists, 
by the nucleation of a double jog). The splitting of the core also results in a lateral 
extension of the layers in the core, which we can describe as an ‘effective’ extensional 
stress and which helps in the formation of these pairs of pores when a configurational 
force drives the dislocation in its glide plane. Let us recall that in usual lyotropics, 
climb is favoured rather than glide: it does not necessitate any breaking and recon- 
struction of the layer. Finally we complete this paper by a discussion of the low energy 
of activation for mobility processes, which we relate to the energy of nucleation of 
pores. 

2. Some topics on the phase diagram of low Kl materials and 
large Kl materials compared 

2.1. Generalities 
The X-ray studies of cubic phases have shown that their structure has the overall 

topology of a minimal surface C with possibly many sheets (a, + o2 = 0; a, and a2 
are the principal curvatures) which runs through all three-dimensional space in a 
periodic manner, without self-intersections [8]. The cubic symmetry groups of 
relevance for lyotropic systems and the corresponding arrangements of minimal 
surfaces have been classified by Scriven [9]. The monolayers of amphiphiles fold along 
surfaces of negative gaussian curvature a, a2 which are equidistant from C, on both 
sides; the final result is a structure made of connected infinite media for water (one 
or several) and for the amphiphiles. The two monolayers which are both sides of C 
form what we refer to as a biluyer in the sequel. 

In Helfrich’s model of the stability of the cubic phases, the bilayer is prior to the 
monolayer; the stability is due to the existence of a negative [lo] saddle-splay coef- 
ficient K2bq entering the free energy density eL: = - K,b,apa! where a: and a: desig- 
nate now some average made over the principal curvatures of the two monolayers, 
which are therefore parallel in first approximation. In Charvolin and Sadoc’s model 
[l 11, the stability is presented as the result of a geometrical compromise, a ‘defrus- 
tration’, between stress elasticity which tends to keep the monolayers parallel, and 
curvature elasticity which acts separately on each of them and tends to curve them in 
a similar manner (by which it is meant that both monolayers curve spontaneously 
along a surface of spherical curvature, both of them with the aliphatic chains either 
inside this spherical shape, or outside), i.e. in opposite directions with respect to the 
middle surface X of the bilayer. It is then argued that in order to satisfy these 
contradictory requirements, monolayers take together a negative (hyperbolic) curva- 
ture, rather than the spherical one that each of them would take spontaneously. 

Let us recall at this stage that the discussion of the curvature free energy of a 
monolayer is usually made either in terms of spontaneous mean curvature ao, or in 
terms of gaussian curvature. This duality deserves some remarks, and a return to the 
definitions of the terms which are in use. 
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1358 M. Kleman 

h>O 

Q < O  
h(l< 0 

Figure 1. Definition of h (with sign) in a curved layer. 

The spontaneous mean curvature is taken by convention to be positive if the 
monolayer curves spontaneously as a direct micelle (figure 1 (a)), and the inverse in 
the opposite case (figure 1 (h)). But in both cases the resulting spontaneous gaussian 
curvature 00’ is positive, i.e. the monolayers curve spontaneously towards spherical 
surfaces, if the splay energy term 

ef, = +K,(oj + 02 - 200)~ (1) 

is predominant. Since the sign of oo is conventional, the sign of oI + o2 has to be fixed 
with the same convention, i.e. the normal to the layers has to be oriented the same way 
for oo and for ol, 02 .  

Gaussian curvature appears in the saddle-splay term of the monolayer 

@As = -K240162* (2) 

A positive KZ4 favours positive gaussian curvature; the inverse is true if K24 is 
negative. No sign convention is necessary in defining oI 02. Therefore hyperbolic 
spontaneous curvature can be explained phenomenologically only by the K24 term, 
which seems more general than the ef, splay term. 

In fact the two physical concepts of curvature are simply related, as we show 
below, at least in a model of the monolayer where the microscopic forces in play are 
short range and leading to a dense packing, for the polar heads, and entropic for the 
chains. Then KT4 is necessarily positive. We assume that this is the model for low K ,  
materials. It is also a model which is coherent with the ‘frustration’ model of the cubic 
phases alluded to above, if K24 is not too large, i.e. if the tendency towards positive 
gaussian curvature of the monolayers is not too strong and does not prevent the 
formation of hyperbolic curvature. For this condition 

A,, = (K*4/W2 < do, (3) 
where do is a typical layer thickness and B is a compressibility modulus which 
measures the steric forces of interaction between monolayers. If K24 is, on the other 
hand, large but still positive, we do not expect the cubic phases to be stable. Finally, 
a negative KZ4 can only be explained by more complex forces of interaction between 
molecules in the monolayer. 
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Modelling surfactant-water systems 1359 

In the sequel we speculate that the stability of the cubic phases of usual lyotropic 
materials ( K ,  large) is due to a negative K24 (on each monolayer), a condition which 
of course yields a negative K:4 (we retrieve Helfrich’s condition); in this case one 
expects a large domain of existence of the cubic phase, if other factors do not affect 
it. Conversely for low K ,  materials, a positive but small K24 obeying equation ( 3 )  might 
not prevent the cubic phase from existing if one believes in the ‘frustrated’ model of 
Charvolin et al. The domain of existence of Q, should, however, be small, while the 
extent of the L, phase should be rather large (as observed), as it is stabilized by the 
entropy contribution of the chains and possibly of the polar heads, whose length is 
comparable to the length of the chains, in the type of compounds we considered in 
the introduction. 

2.2.  Large K ,  materials and the role of saddle-splay 
Cubic phases can be understood as a result of a strong K ,  (A = (K, /B)’” com- 

parable to do) and of a tendency towards negative gaussian curvature of the monolay- 
ers (K24 < 0), without any frustration originating in the competition of these tenden- 
cies. 

Note C, the middle surface of the two monolayers, which sit at  an effective 
distance +_ h of X. h varies from point to point on X, and the elements of area d Z +  - , 
on the k monolayers, are related to dC, the element of area on C, - , by 

d C ,  = dC[ l  f h(al + 02)  + h2a ,a ,  + (V,h)2 + O(h3)1, (4) 

where V ,  is the gradient along Z. 
(V, h)’ is a short hand notation for 

where A ,  B, dx, , dx, appear in the fundamental quadratic form of the surface 

ds2 = A2d$ + B2dx:,  

where this surface is spanned by a system of rectangular curvilinear coordinates. In 
general it is not possible, except in the case of minimal surfaces, to make A = B. If 
the minimal surface is the plane, we can take A = B = constant. In equation (6)  the 
reader should understand that (ajax) = (l/R)(a/ax,), (a /dy)  = (1/R)(i3/8x2) and 
A = B = R .  

We now require the two monolayers to possess properties of mutual symmetry. 
This condition implies that the terms of odd order in equation (4) vanish, at least for 
the largest ones. Hence the mean curvature H must vanish 

H = 6, + 6 2  = 0, 

which means that C is either a plane or a minimal surface. If K24 is strongly negative, 
it is a minimal surface and this is the result we expected. However this condition does 
not mean that C+ and 2- are symmetric with respect to C (symmetry in the usual 
sense implies congruence, and Z+ and C- are not congruent, even if H = 0). For 
example, the mean curvatures H+ and H _  are different; they read to the first order 
in h 

H ,  = - H -  = V , h  + O(h2) .  ( 5 )  
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1360 M. Kleman 

Similarly the gaussian curvatures G ,  and G -  read 

where R = I I/o, I = I I / Q ~ [  and G = cr, 02.  Equations ( 5 )  and (6) have been derived by 
taking into account the condition H = 0. 

The gaussian curvatures AG+ = G ,  - G -  and AG- = G -  - G give opposite 
contributions to the free energy of the two monolayers, according to equation (2). 
Conversely both mean curvatures H ,  and H _  give positive contributions to the free 
energy. It is therefore tempting to make H+ = H -  = 0 in order to reduce the energy. 
The monolayers are therefore themselves minimal surfaces, but to some correction 
which is of the second order (see equation (6)) .  The splay contribution vanishes to the 
same order. The only energy terms which enter significantly the stability problem of 
the cubic phases we are describing here are, therefore, the term of compression, and 
the saddle-splay term; they act in opposite directions if K24 is negative. 

2.3. Low K,  materials and the role of entropy 
The presence of a cubic phase in a low K, material can of course also be justified 

in the model just proposed for large K, material in 52.2, with a negative K24 which can 
be small, since K,  is itself small, and we do not reject this possibility at all; in some 
of our non-ionic surfactants C,EO, the polar heads and the aliphatic chains are of 
similar length, for m - n, and the saddle-splay terms coming from the contributions 
of both sides can compensate near zero, with a global negative sign. But we investigate 
here another possibility, in agreement with the model of frustration [l 11, with a small 
positive KZ4 coming from the entropy of the chains, and corresponding to some mean 
spontaneous curvature. More specifically, we show that the entropy contribution of 
the chains of a monolayer yields spontaneous curvature g o ,  and a small positive K24, 

while the entropy contribution of the chains of a bilayer always tends to hinder 
spontaneous curvature of the bilayer. In other words, we explain in this model the 
large stability in temperature of the La phase, rather than the stability of the Q. phase 
which is anyway small. 

Let us assume, as in the more complex models of Ben-Shaul and Gelbardt [17], 
that the area per polar head is not modified significantly when the layers are distorted. 
We do not expect any influence of the entropy of configuration in ordered phases like 
QU or La, contrary to the case of microemulsions. We therefore consider only the 
difference in entropy between the curved monolayer and the flat one in a model where 
we treat the chains as a two-dimensional perfect gas; this difference varies propor- 
tionally to the logarithm of the change in area of the chains 

where h is still some effective distance, but now measured from the surface of the polar 
heads to some position along the normal to C. Some caution has to be taken in the 
definition of the sign of h (see figure 1). We will now discuss a number of very simple 
conclusions which can be drawn from the consideration of equation (7). 

A curved bilayer has always a smaller entropy than a planar one; entropy con- 
tributes then to the total free energy by a splay modulus 

h2 
a' 

KP - k B T 1 ,  
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Modelling surfactant-water systems 1361 

which is of no consequence as long as the splay modulus of pure elastic origin is large 
compared to kB T (h, denotes some physical length (related to h and to the distance 
between the monolayers) which describes this splay effect). However, if this not the 
case, the entropy term KF favours greatly the La phase (if B is large). This is why 
the La phase is so large in non-ionic surfactants. We can even expect that the greater 
the h, ,  the larger the domain of existence of the L, phase. Experimentally, the L, phase 
in Cl2EO, has the largest extension for n small; there are neither cubic Qa nor 
hexagonal H, phases for n < 4. The extent of the La phase decreases when n increases, 
while correlatively the Q, and H, phases appear for n = 4, and increase equally with 
n. More generally, the extent of the L, phase increases with the ratio m/n in C,EO, 
phases, which looks coherent with a possible correspondingly increasing effective 
length h, . 

Note that KF (equation (8)) decreases with T ,  and might become smaller than the 
elastic contribution to the splay constant; when this happens, entropy no longer 
stabilizes the La phase, and a strong first order transition to Qa or H, phase can occur. 
These are phases of monolayers, whose spontaneous curvature is stabilized by 
entropy effects, with a small positive K24, as we show now. It is interesting to notice 
that our argument predicts those phases at a lower temperature than the La phase, as 
is indeed observed. 

Consider a monolayer, with chains obeying a perfect gas model, and a free energy 
density containing only splay and entropy terms 

kB T @f = * K , ( a ,  + a2)’ - TInD, a (9) 

with 

D = 1 + h(a, + 0 2 )  + h2ala2. 

according to equation (7) (we discard the gradient terms). By minimizing @ f  with 
respect to a, and a’ we find two spontaneous curvatures, which both are stable 
minima (but one of them leads to a smaller free energy density), viz. 

0’ = 0 0  = - ‘ r l  & (1 + -- K ,  a’ 
a, = 

2h 

and an effective K24 which is positive, as expected for a positive gaussian curvature, 

kBT h2 K = - -  
a2 Do’ 24 

where Do = 4gih2. We believe that we have obtained with equations (8) and (9) the 
simplest model to obtain spontaneous positive curvature with here the chains outside 
(we have introduced entropy in the chains; our result resembles the Bancroft rule [19]). 

We can improve the model of the monolayer by introducing an elastic contribution 
of the chains which supplements the elastic contribution K ,  of the polar heads and the 
entropic contribution K24 of the chains. This elastic contribution is estimated as 

s@f = +K;(o; + a’)’ 2 9  

where K ;  is a splay constant of the chains, and a; and a; the curvatures of the surface 
Z h ,  at  a distance h from the polar heads. We get easily 

Q f  = +K;(a, + 02)’ + hK;(o, + a2)((~: + 0;). (12) 
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1362 M. Kleman 

The new free energy density e f  + 6efis more complex. In particular the minimiza- 
tion leads to an algebraic equation of the third order. It can be shown that, while the 
root of smaller energy in the simple case studied above leads always to ha, > 0, a root 
of even smaller energy ha, < 0 appears in this formulation, when K: is large enough. 
This root breaks the Bancroft rule. We have not studied this case in detail. 

2.4. Microemulsions 
We mention them for the sake of completeness. They are low K ,  materials 

thermodynamically stabilized by the entropy of configuration of the micellar shapes, 
and therefore not some form of disordered Q. phases. 

3. Model of the core of edge dislocations 
3.1. Extension of the core 

We reproduce here, in a somewhat shorter version, arguments which have been 
first given in [4]. The deformation field of an edge dislocation is represented in 
figure 2, according to [12,13]: the layers are practically equidistant outside two 
parabolae of shape 

x2 = +4Az, (13) 
where A = ( K ,  /B)"2 is the de Gennes penetration length for smectics. The layers are 
at some angle LY of the general direction of the layers inside the parabolae, with 

CI - b ( A ~ ) ~ ' / ~ e x p ( - x * / 4 z ~ )  

decreasing slowly along z ,  but large for 121 < b2/A. The curvature of the layers inside 
the parabolae can be considered as large; hence linear elasticity is not relevant in 
the region where the width of the parabola is smaller than do, the layers repeat 
distance, i.e. within the distance 1zI < dj/A. Since 161 = nd, (n 2 l), the first con- 
dition IzI < b2/A is satisfied for IzI < di/A and we expect an extension of the core 
along the z direction of the order of 

t2 = d i l l .  (14) 
This quantity is of the order of do for usual values of K , ;  in such a case the core is 
rather isotropic, with tX - t,, and the current model of a core split into two dis- 
clinations, with a semicircular folding of the layers (figure 2) is certainly valid. But 
when K ,  is of the order of k,T, i.e. small as it is in the system we are considering, 

Figure 2.  Schematic drawing of the deformation of the layers in the elastic region around an 
edge dislocation. 
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Modelling surfactant-water systems 1363 

water 

n 
/ T  water 

Figure 3. 1 < do; core extended perpendicularly to the layers. 

the core is extremely anisotropic (5, - I O ~ , ,  taking for I the value measured in 
C,,EO,), and can be modelled as in figure 3. This model is probably not the only 
possibility but it indicates a strong tendency for the layers to behave as if they were 
stretched in this region. Dislocations with extended cores of that type are observed in 
the roll systems of electro-hydrodynamical instabilities in nematics; these systems are 
formally similar to two-dimensional smectics, and are equivalent to a small I smectic 
for a particular choice of the driving frequency [18]. 

3.2. Lateral extension and effective stress of the layers in the core 
In studying the glide of an edge dislocation, we shall be led to consider the 

nucleation of pores in the extended core submitted to a shear stress E,3 = ol3/d0 
acting in the layers parts which are along Oz. If the surface of a pore is A ,  the work 
done by the stress in creating the pore is o 1 3 A  [22], a quantity which is subtracted from 
the activation energy U of the pore. If, furthermore, the layers are extended because 
their thermal fluctuations are damped in this region, the activation energy is no longer 
U but U - o,A, where oc is an effective stress which describes phenomenologically 
this stretching. It is therefore interesting to investigate the order of magnitude of this 
stretching, in the line of the theory proposed by Helfrich and Servuss [20] in their 
study of the undulations of membranes. 

Consider first parallel fluid membranes in an overall undeformed smectic. We 
expect according to Helfrich and Servuss a mean square fluctuation of the layers 
( lu21) - ad:, where a is some numerical coefficient of the order of 1/10. Most of the 
fluctuations which contribute to ( lu21) have a long wavelength, in particular larger 
than the de Gennes wavelength 5, below which the layers are rigid [21], 

2 m  tK - aexp- 
k ,  T’ 

where K = Kldo is the rigidity of one layer. Inserting KI - lO-*dyne/cm leads to 
5, - 20A. Above this length the layers do not feel any stretching. Under this length, 
there is some stretching which can be estimated as the ratio K ,  ( < u 2 ) l i z / t ~ )  (according 
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1364 M. Kleman 

to linear elasticity we have oI3 = Kl (d3u/dx3), i.e. is of the order of lo-’ dyne/cm. This 
expression of oI3 is justified by the fact that there are no thermal effects for lengths 
below 5,. 

Since 5, is rather small, according to de Gennes’ theory this should lead to a 
disordered state rather than a lamellar state; this is however obviously not the case. 
An explanation can be sought in the fact that the entropy of the bilayers is larger when 
they are planar than when they are curved; as shown above this entropy factor has 
to be taken into account as long as K 5 kB T.  Note that de Gennes’ theory considers 
monolayers and not bilayers. The typical length for bilayers is r,. 

In order to estimate now the stretching due to the undulations whose wavelength 
seats between r ,  and l,, we write the Fourier components of the layer displacement 
u as 

where we use X, the stress density per unit volume, and K ,  , rather than the values 
related to surfaces, since we are considering a bulk specimen. We also introduce the 
layers compressibility modulus B. We integrate equation (16) in the ranges (2n:/5,) < 
qL < (2742) and 0 < qI1 < 2n/d,; we have, replacing integration on discrete modes 
by a volume integration, 

The integration on q1 is straightforward and yields 

1 B 2n: 
(lul’) = - 2(2n:)’ kBT B”’(q;K, + qL * X  ) l/’tan-l[((q~Kl + q t X ) 1 / 2 ) x ] *  

Since only small qL are contributing, for which q; Kd; < 2zB (this inequality is even 
true for the largest q1 - 2n:/5,, since K, / B  = A’ < d;), we approximate the tan-’ by 
x/2 and get, for T: = 0, 

5, (Ad,) In - 
a 

kB T (lul’) - 
The essential result we get is that ( lu’ l)  no longer scales like d;, but like Ad,; this 
difference does not matter when A - do. But in our case it implies that the fluctuations 
of the layers are much less important than expected, and conversely, the effective 
stress at a scale smaller than tz is relatively large, of the order of 

kgT 1 4xic 
471 (lul’) - Ad, 

6, - -- - - - 1 dyne/cm. 

Whether this value of o, is large enough to significantly decrease the activation energy 
for mobility of edge dislocations in climb is a question which we investigate below and 
to which we give a positive answer. 

4. The mobility of an edge dislocation 
As already stated, the usual mechanism of motion of edge dislocation in water- 

surfactant systems is by climb, i.e. the dislocation line moves in a layer, perpen- 
dicularly to its Burgers’ vector. This is in strong contrast with the main mechanism 
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Modelling surfactant-water systems 1365 

of motion of dislocations in solids, where glide is dominant. Climb is non- 
conservative, i.e. requires the displacement of matter by diffusion or by some flow 
process of molecules through the layers, while glide is conservative. 

4.1. Climb 
Topology (separation of water and hydrophobic media) favours easy climb, which 

can proceed by the addition in series of two mechanisms: (a)  jump of amphiphilic 
molecules from one layer to the next near the tip of the supplementary layers which 
constitute the edge dislocation, and (b) diffusion along the layers. It is clearly this 
jump (through water, or by a flip-flop from one monolayer to the next) which is 
difficult and determines the activation energy, nothing else than the activation energy 
for self-diffusion D,, through the layers. Any metallurgical model of climb would 
therefore foresee a mobility coefficient m = V/C,  where V is the velocity of the 
configuration of the dislocation, and C the applies stress, of the form 

D,, Vm 1 m =  a-- 
k,T I ’  

where V, is a molecular volume, D,, the self diffusion constant for motion perpen- 
dicular to the layers, 1 a molecular length, and a a numerical coefficient. The quantity 
D,, V,/kB T is akin to A,, the Helfrich coefficient of permeation. Equation (20) yields 
a mobility which is independent of the Burgers’ vector. Models which consider that 
the permeation process takes place all along the layer, and not only at  the tip, lead 
to a mobility proportional to the Burgers’ vector. We need more experiments to reach 
a conclusion concerning which type of model is good, but it might well be that the 
truth is in between. 

The mobility of edge dislocations in climb is measured by the ‘lubrication wedge’ 
method [23]; it yields in our non-ionic surfactants a value of 1, of the order of 
10-14cm2/poise, as in a classical thermotropic SA phase, for example 8CB, and an 
activation energy of the order of 0.4eV, which is at least four times smaller than in 
8CB. These values of A, are in contrast with those measured in lecithin, where ,Ip is 
lo-’’ times smaller. This difference is explained [5] as being due to the fact that the 
main process of permeation is through the channels offered by the screw dislocations 
when their density is sufficient (A, scales as cr:/p in this model; c is the density of screw 
dislocations per unit surface of layer, r, the channel radius, and p the viscosity through 
the channel). The activation energy which is measured is therefore the activation 
energy of the inverse viscosity (i.e. diffusivity) of the matter which flows through the 
channel. If it is water, as it can be in a lyotropic liquid crystal, and since rc is much 
probably of the order of do, i.e. larger than the size of a water molecule, we do expect 
to find a value akin to the value of pure water, except if the polar oxyethylenic heads 
offer large obstacles (the question can be quite subtle, since OE has no affinity for 
water above the higher consolute point, which is explained this way). If the channel 
is an inverse channel, it is the surfactant itself which flows, but in a very anisotropic 
medium of aliphatic chains. The geometrical situation for diffusion would then be 
much akin to the flow through channels in a thermotropic smectic, where the acti- 
vation energy is high. From the experimental results in lubrication [ 151 we therefore 
expect that most of the diffusion through layers goes through direct screw dislocations 
channels and direct pores and passages. The activation energy for self diffusion of 
water is -0.15 eV [24]. 
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screw segments 

Figure 4. A double jog along the extended core. 

4.2. Glide 
In glide, the layers have to break and fuse again. This is most probably achieved 

in C,,EO, and CI2EO, by the activated nucleation of double jogs, formed of short 
segments of screw dislocations of opposite sign, which originate in the core region of 
the edge dislocation as pictured in figure 4. Since the cores of the screw dislocations 
are akin to pores, the activation energy is the energy of formation of these pores, U ,  
decreased by the energy gain due to the effective stress ac of the layers in the region 
where the pores nucleate. 

The gain in energy due to  stretching is acA, where A is a typical area for a 
pore. With ac - 1 dyne/cm and A - nd;, we get a,A - 0.3eV. This is prob- 
ably an overestimated value, but it remains that the tendency to layers cohering 
which pre-exists in the extended core should make glide quite easy. In compari- 
son with classical dislocation theory in metals, this situation is somewhat akin to 
climb in presence of an oversaturation of point defects; here the analogues of the 
point defects are the pores which nucleate easily on the stretched layers, since 
their energy of formation is decreased by the quantity acA, i.e. E = U - o,A 

5. Conclusion 
Non-ionic surfactants in water offer a new type of lyotropic system with quite 

unusual features, which have been discussed in this paper at  a very elementary level, 
assuming that some of these new features arise from a low K ,  layer rigidity (which 
remains to be explained with some molecular model). In this context, two ideas appear 
to be of relevance. 

First, since K = Kl do is small and comparable to k,  T, the entropy effects of the 
chains have to be taken into account. Their contribution should explain both the large 
extent in the phase diagram of the lamellar phase and the small extent of the cubic 
phase, whose stability might result either from the competition of mutually frustrating 
effects specific to low K ,  media, or of a negative K24 saddle-splay constant. Secondly, 
the penetration length A = (K,/B)”’ being small, the usual core model of edge 
dislocations has to be modified, and layers’ stretching effects considered in the 
question of the mobility of the defects. 

It is clear that any complete model of non-ionic surfactants has to go much farther 
than these very simple ideas, which none the less can be of some help in the difficult 
and vast question of systems with interfaces, and in particular point out to new 
questions relevant to more usual surfactants in water, and microemulsions. 
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